史上最全的“大数据”学习资源整理【2-2】
数据摄取[*]Amazon Kinesis:大规模数据流的实时处理;
[*]Apache Chukwa:数据采集系统;
[*]Apache Flume:管理大量日志数据的服务;
[*]Apache Kafka:分布式发布-订阅消息系统;
[*]Apache Sqoop:在Hadoop和结构化的数据存储区之间传送数据的工具;
[*]Cloudera Morphlines:帮助 Solr、HBase和HDFS完成ETL的框架;
[*]Facebook Scribe:流日志数据聚合器;
[*]Fluentd:采集事件和日志的工具;
[*]Google Photon:实时连接多个数据流的分布式计算机系统,具有高可扩展性和低延迟性;
[*]Heka:开源流处理软件系统;
[*]HIHO:用Hadoop连接不同数据源的框架;
[*]Kestrel:分布式消息队列系统;
[*]LinkedIn Databus:对数据库更改捕获的事件流;
[*]LinkedIn Kamikaze:压缩已分类整型数组的程序包;
[*]LinkedIn White Elephant:日志聚合器和仪表板;
[*]Logstash:用于管理事件和日志的工具;
[*]Netflix Suro:像基于Chukwa 的Storm和Samza一样的日志聚合器;
[*]Pinterest Secor:是实现Kafka日志持久性的服务;
[*]Linkedin Gobblin:LinkedIn的通用数据摄取框架;
[*]Skizze:是一种数据存储略图,使用概率性数据结构来处理计数、略图等相关的问题;
[*]StreamSets Data Collector:连续大数据采集的基础设施,可简单地使用IDE。
服务编程
[*]Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间;
[*]Apache Avro:数据序列化系统;
[*]Apache Curator:Apache ZooKeeper的Java库;
[*]Apache Karaf:在任何OSGi框架之上运行的OSGi运行时间;
[*]Apache Thrift:构建二进制协议的框架;
[*]Apache Zookeeper:流程管理集中式服务;
[*]Google Chubby:一种松耦合分布式系统锁服务;
[*]Linkedin Norbert:集群管理器;
[*]OpenMPI:消息传递框架;
[*]Serf:服务发现和协调的分散化解决方案;
[*]Spotify Luigi:一种构建批处理作业的复杂管道的Python包,它能够处理依赖性解析、工作流管理、可视化、故障处理、命令行一体化等等问题;
[*]Spring XD:数据摄取、实时分析、批量处理和数据导出的分布式、可扩展系统;
[*]Twitter Elephant Bird:LZO压缩数据的工作库;
[*]Twitter Finagle:JVM的异步网络堆栈。
调度
[*]Apache Aurora:在Apache Mesos之上运行的服务调度程序;
[*]Apache Falcon:数据管理框架;
[*]Apache Oozie:工作流作业调度程序;
[*]Chronos:分布式容错调度;
[*]Linkedin Azkaban:批处理工作流作业调度;
[*]Schedoscope:Hadoop作业敏捷调度的Scala DSL;
[*]Sparrow:调度平台;
[*]Airflow:一个以编程方式编写、调度和监控工作流的平台。
机器学习
[*]Apache Mahout:Hadoop的机器学习库;
[*]brain:JavaScript中的神经网络;
[*]Cloudera Oryx:实时大规模机器学习;
[*]Concurrent Pattern:Cascading的机器学习库;
[*]convnetjs:Javascript中的机器学习,在浏览器中训练卷积神经网络(或普通网络);
[*]Decider:Ruby中灵活、可扩展的机器学习;
[*]ENCOG:支持多种先进算法的机器学习框架,同时支持类的标准化和处理数据;
[*]etcML:机器学习文本分类;
[*]Etsy Conjecture:Scalding中可扩展的机器学习;
[*]Google Sibyl:Google中的大规模机器学习系统;
[*]GraphLab Create:Python的机器学习平台,包括ML工具包、数据工程和部署工具的广泛集合;
[*]H2O:Hadoop统计性的机器学习和数学运行时间;
[*]MLbase:用于BDAS堆栈的分布式机器学习库;
[*]MLPNeuralNet:针对iOS和Mac OS X的快速多层感知神经网络库;
[*]MonkeyLearn:使文本挖掘更为容易,从文本中提取分类数据;
[*]nupic:智能计算的Numenta平台,它是一个启发大脑的机器智力平台,基于皮质学习算法的精准的生物神经网络;
[*]PredictionIO:建于Hadoop、Mahout和Cascading上的机器学习服务器;
[*]SAMOA:分布式流媒体机器学习框架;
[*]scikit-learn:scikit-learn为Python中的机器学习;
[*]Spark MLlib:Spark中一些常用的机器学习(ML)功能的实现;
[*]Vowpal Wabbit:微软和雅虎发起的学习系统;
[*]WEKA:机器学习软件套件;
[*]BidMach:CPU和加速GPU的机器学习库。
基准测试
[*]Apache Hadoop Benchmarking:测试Hadoop性能的微基准;
[*]Berkeley SWIM Benchmark:现实大数据工作负载基准测试;
[*]Intel HiBench:Hadoop基准测试套件;
[*]PUMA Benchmarking:MapReduce应用的基准测试套件;
[*]Yahoo Gridmix3:雅虎工程师团队的Hadoop集群基准测试。
安全性
[*]Apache Knox Gateway:Hadoop集群安全访问的单点;
[*]Apache Sentry:存储在Hadoop的数据安全模块。
系统部署
[*]Apache Ambari:Hadoop管理的运作框架;
[*]Apache Bigtop:Hadoop生态系统的部署框架;
[*]Apache Helix:集群管理框架;
[*]Apache Mesos:集群管理器;
[*]Apache Slider:一种YARN应用,用来部署YARN中现有的分布式应用程序;
[*]Apache Whirr:运行云服务的库集;
[*]Apache YARN:集群管理器;
[*]Brooklyn:用于简化应用程序部署和管理的库;
[*]Buildoop:基于Groovy语言,和Apache BigTop类似;
[*]Cloudera HUE:和Hadoop进行交互的Web应用程序;
[*]Facebook Prism:多数据中心复制系统;
[*]Google Borg:作业调度和监控系统;
[*]Google Omega:作业调度和监控系统;
[*]Hortonworks HOYA:可在YARN上部署HBase集群的应用;
[*]Marathon:用于长期运行服务的Mesos框架。
应用程序
[*]Adobe spindle:使用Scala、Spark和Parquet处理的下一代web分析;
[*]Apache Kiji:基于HBase,实时采集和分析数据的框架;
[*]Apache Nutch:开源网络爬虫;
[*]Apache OODT:用于NASA科学档案中数据的捕获、处理和共享;
[*]Apache Tika:内容分析工具包;
[*]Argus:时间序列监测和报警平台;
[*]Countly:基于Node.js和MongoDB,开源的手机和网络分析平台;
[*]Domino:运行、规划、共享和部署模型——没有任何基础设施;
[*]Eclipse BIRT:基于Eclipse的报告系统;
[*]Eventhub:开源的事件分析平台;
[*]Hermes:建于Kafka上的异步消息代理;
[*]HIPI Library:在Hadoop's MapReduce上执行图像处理任务的API;
[*]Hunk:Hadoop的Splunk分析;
[*]Imhotep:大规模分析平台;
[*]MADlib:RDBMS的用于数据分析的数据处理库;
[*]Kylin:来自eBay的开源分布式分析工具;
[*]PivotalR:Pivotal HD / HAWQ和PostgreSQL中的R;
[*]Qubole:为自动缩放Hadoop集群,内置的数据连接器;
[*]Sense:用于数据科学和大数据分析的云平台;
[*]SnappyData:用于实时运营分析的分布式内存数据存储,提供建立在Spark单一集成集群中的数据流分析、OLTP(联机事务处理)和OLAP(联机分析处理);
[*]Snowplow:企业级网络和事件分析,由Hadoop、Kinesis、Redshift 和Postgres提供技术支持;
[*]SparkR:Spark的R前端;
[*]Splunk:用于机器生成的数据的分析;
[*]Sumo Logic:基于云的分析仪,用于分析机器生成的数据;
[*]Talend:用于YARN、Hadoop、HBASE、Hive、HCatalog和Pig的统一开源环境;
[*]Warp:利用大数据(OS X app)的实例查询工具。
搜索引擎与框架
[*]Apache Lucene:搜索引擎库;
[*]Apache Solr:用于Apache Lucene的搜索平台;
[*]ElasticSearch:基于Apache Lucene的搜索和分析引擎;
[*]Enigma.io:为免费增值的健壮性web应用,用于探索、筛选、分析、搜索和导出来自网络的大规模数据集;
[*]Facebook Unicorn:社交图形搜索平台;
[*]Google Caffeine:连续索引系统;
[*]Google Percolator:连续索引系统;
[*]TeraGoogle:大型搜索索引;
[*]HBase Coprocessor:为Percolator的实现,HBase的一部分;
[*]Lily HBase Indexer:快速、轻松地搜索存储在HBase的任何内容;
[*]LinkedIn Bobo:完全由Java编写的分面搜索的实现,为Apache Lucene的延伸;
[*]LinkedIn Cleo:为一个一个灵活的软件库,使得局部、无序、实时预输入的搜索实现了快速发展;
[*]LinkedIn Galene:LinkedIn搜索架构;
[*]LinkedIn Zoie:是用Java编写的实时搜索/索引系统;
[*]Sphinx Search Server:全文搜索引擎
MySQL的分支和演化
[*]Amazon RDS:亚马逊云的MySQL数据库;
[*]Drizzle:MySQL的6.0的演化;
[*]Google Cloud SQL:谷歌云的MySQL数据库;
[*]MariaDB:MySQL的增强版嵌入式替代品;
[*]MySQL Cluster:使用NDB集群存储引擎的MySQL实现;
[*]Percona Server:MySQL的增强版嵌入式替代品;
[*]ProxySQL:MySQL的高性能代理;
[*]TokuDB:用于MySQL和 MariaDB的存储引擎;
[*]WebScaleSQL:运行MySQL时面临类似挑战的几家公司,它们的工程师之间的合作。
PostgreSQL的分支和演化
[*]Yahoo Everest - multi-peta-byte database / MPP derived by PostgreSQL.
[*]HadoopDB:MapReduce和DBMS的混合体;
[*]IBM Netezza:高性能数据仓库设备;
[*]Postgres-XL:基于PostgreSQL,可扩展的开源数据库集群;
[*]RecDB:完全建立在PostgreSQL内部的开源推荐引擎;
[*]Stado:开源MPP数据库系统,只针对数据仓库和数据集市的应用程序;
[*]Yahoo Everest:PostgreSQL可以推导多字节P比特数据库/MPP。
Memcached的分支和演化
[*]Facebook McDipper:闪存的键/值缓存;
[*]Facebook Memcached:Memcache的分支;
[*]Twemproxy:Memcached和Redis的快速、轻型代理;
[*]Twitter Fatcache:闪存的键/值缓存;
[*]Twitter Twemcache:Memcache的分支。
嵌入式数据库
[*]Actian PSQL:Pervasive Software公司开发的ACID兼容的DBMS,在应用程序中嵌入了优化;
[*]BerkeleyDB:为键/值数据提供一个高性能的嵌入式数据库的一个软件库;
[*]HanoiDB:Erlang LSM BTree存储;
[*]LevelDB:谷歌写的一个快速键-值存储库,它提供了从字符串键到字符串值的有序映射;
[*]LMDB:Symas开发的超快、超紧凑的键-值嵌入的式数据存储;
[*]RocksDB:基于性LevelDB,用于快速存储的嵌入式持续性键-值存储。
商业智能
[*]BIME Analytics:商业智能云平台;
[*]Chartio:精益业务智能平台,用于可视化和探索数据;
[*]datapine:基于云的自助服务商业智能工具;
[*]Jaspersoft:功能强大的商业智能套件;
[*]Jedox Palo:定制的商业智能平台;
[*]Microsoft:商业智能软件和平台;
[*]Microstrategy:商业智能、移动智能和网络应用软件平台;
[*]Pentaho:商业智能平台;
[*]Qlik:商业智能和分析平台;
[*]Saiku:开源的分析平台;
[*]SpagoBI:开源商业智能平台;
[*]Tableau:商业智能平台;
[*]Zoomdata:大数据分析;
[*]Jethrodata:交互式大数据分析。
数据可视化
[*]Airpal:用于PrestoDB的网页UI;
[*]Arbor:利用网络工作者和jQuery的图形可视化库;
[*]Banana:对存储在Kibana中Solr. Port的日志和时戳数据进行可视化;
[*]Bokeh:一个功能强大的Python交互式可视化库,它针对要展示的现代web浏览器,旨在为D3.js风格的新奇的图形提供优雅简洁的设计,同时在大规模数据或流数据集中,通过高性能交互性来表达这种能力;
[*]C3:基于D3可重复使用的图表库;
[*]CartoDB:开源或免费增值的虚拟主机,用于带有强大的前端编辑功能和API的地理空间数据库;
[*]chartd:只带Img标签的反应灵敏、兼容Retina的图表;
[*]Chart.js:开源的HTML5图表可视化效果;
[*]Chartist.js:另一个开源HTML5图表可视化效果;
[*]Crossfilter:JavaScript库,用于在浏览器中探索多元大数据集,用Dc.js和D3.js.效果很好;
[*]Cubism:用于时间序列可视化的JavaScript库;
[*]Cytoscape:用于可视化复杂网络的JavaScript库;
[*]DC.js:维度图表,和Crossfilter一起使用,通过D3.js呈现出来,它比较擅长连接图表/附加的元数据,从而徘徊在D3的事件附近;
[*]D3:操作文件的JavaScript库;
[*]D3.compose:从可重复使用的图表和组件构成复杂的、数据驱动的可视化;
[*]D3Plus:一组相当强大的可重用的图表,还有D3.js的样式;
[*]Echarts:百度企业场景图表;
[*]Envisionjs:动态HTML5可视化;
[*]FnordMetric:写SQL查询,返回SVG图表,而不是表;
[*]Freeboard:针对IOT和其他Web混搭的开源实时仪表盘构建;
[*]Gephi:屡获殊荣的开源平台,可视化和操纵大型图形和网络连接,有点像Photoshop,但是针对于图表,适用于Windows和Mac OS X;
[*]Google Charts:简单的图表API;
[*]Grafana:石墨仪表板前端、编辑器和图形组合器;
[*]Graphite:可扩展的实时图表;
[*]Highcharts:简单而灵活的图表API;
[*]IPython:为交互式计算提供丰富的架构;
[*]Kibana:可视化日志和时间标记数据;
[*]Matplotlib:Python绘图;
[*]Metricsgraphic.js:建立在D3之上的库,针对时间序列数据进行最优化;
[*]NVD3:d3.js的图表组件;
[*]Peity:渐进式SVG条形图,折线和饼图;
[*]Plot.ly:易于使用的Web服务,它允许快速创建从热图到直方图等复杂的图表,使用图表Plotly的在线电子表格上传数据进行创建和设计;
[*]Plotly.js:支持plotly的开源JavaScript图形库;
[*]Recline:简单但功能强大的库,纯粹利用JavaScript和HTML构建数据应用;
[*]Redash:查询和可视化数据的开源平台;
[*]Shiny:针对R的Web应用程序框架;
[*]Sigma.js:JavaScript库,专门用于图形绘制;
[*]Vega:一个可视化语法;
[*]Zeppelin:一个笔记本式的协作数据分析;
[*]Zing Charts:用于大数据的JavaScript图表库。
物联网和传感器
[*]TempoIQ:基于云的传感器分析;
[*]2lemetry:物联网平台;
[*]Pubnub:数据流网络;
[*]ThingWorx:ThingWorx 是让企业快速创建和运行互联应用程序平台;
[*]IFTTT:IFTTT 是一个被称为 “网络自动化神器” 的创新型互联网服务,它的全称是 If this then that,意思是“如果这样,那么就那样”;
[*]Evrythng:Evrythng则是一款真正意义上的大众物联网平台,使得身边的很多产品变得智能化。
文章推荐
[*]NoSQL Comparison(NoSQL 比较)- Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison;
[*]Big Data Benchmark(大数据基准)- Redshift, Hive, Shark, Impala and Stiger/Tez的基准;
[*]The big data successor of the spreadsheet(电子表格的大数据继承者) - 电子表格的继承者应该是大数据。
论文2015 - 2016
[*]2015 - Facebook - One Trillion Edges: Graph Processing at Facebook-Scale.(一兆边:Facebook规模的图像处理)
2013 - 2014
[*]2014 - Stanford - Mining of Massive Datasets.(海量数据集挖掘)
[*]2013 - AMPLab - Presto: Distributed Machine Learning and Graph Processing with Sparse Matrices. (Presto: 稀疏矩阵的分布式机器学习和图像处理)
[*]2013 - AMPLab - MLbase: A Distributed Machine-learning System. (MLbase:分布式机器学习系统)
[*]2013 - AMPLab - Shark: SQL and Rich Analytics at Scale. (Shark: 大规模的SQL 和丰富的分析)
[*]2013 - AMPLab -GraphX: A Resilient Distributed Graph System on Spark. (GraphX:基于Spark的弹性分布式图计算系统)
[*]2013 - Google - HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. (HyperLogLog实践:一个艺术形态的基数估算算法)
[*]2013 - Microsoft - Scalable Progressive Analytics on Big Data in the Cloud.(云端大数据的可扩展性渐进分析)
[*]2013 - Metamarkets - Druid: A Real-time Analytical Data Store. (Druid:实时分析数据存储)
[*]2013 - Google - Online, Asynchronous Schema Change in F1.(F1中在线、异步模式的转变)
[*]2013 - Google - F1: A Distributed SQL Database That Scales. (F1: 分布式SQL数据库)
[*]2013 - Google - MillWheel: Fault-Tolerant Stream Processing at Internet Scale.(MillWheel: 互联网规模下的容错流处理)
[*]2013 - Facebook - Scuba: Diving into Data at Facebook. (Scuba: 深入Facebook的数据世界)
[*]2013 - Facebook - Unicorn: A System for Searching the Social Graph. (Unicorn: 一种搜索社交图的系统)
[*]2013 - Facebook - Scaling Memcache at Facebook. (Facebook 对 Memcache 伸缩性的增强)
2011 - 2012
[*]2012 - Twitter - The Unified Logging Infrastructure for Data Analytics at Twitter. (Twitter数据分析的统一日志基础结构)
[*]2012 - AMPLab –Blink and It’s Done: Interactive Queries on Very Large Data. (Blink及其完成:超大规模数据的交互式查询)
[*]2012 - AMPLab –Fast and Interactive Analytics over Hadoop Data with Spark. (Spark上 Hadoop数据的快速交互式分析)
[*]2012 - AMPLab –Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. (Shark:使用粗粒度的分布式内存快速数据分析)
[*]2012 - Microsoft –Paxos Replicated State Machines as the Basis of a High-Performance Data Store. (Paxos的复制状态机——高性能数据存储的基础)
[*]2012 - Microsoft –Paxos Made Parallel. (Paxos算法实现并行)
[*]2012 - AMPLab – BlinkDB:BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data.(超大规模数据中有限误差与有界响应时间的查询)
[*]2012 - Google –Processing a trillion cells per mouse click.(每次点击处理一兆个单元格)
[*]2012 - Google –Spanner: Google’s Globally-Distributed Database.(Spanner:谷歌的全球分布式数据库)
[*]2011 - AMPLab –Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters.(Scarlett:应对MapReduce集群中的偏向性内容)
[*]2011 - AMPLab –Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.(Mesos:数据中心中细粒度资源共享的平台)
[*]2011 - Google –Megastore: Providing Scalable, Highly Available Storage for Interactive Services.(Megastore:为交互式服务提供可扩展,高度可用的存储)
2001 - 2010
[*]2010 - Facebook - Finding a needle in Haystack: Facebook’s photo storage.(探究Haystack中的细微之处: Facebook图片存储)
[*]2010 - AMPLab - Spark: Cluster Computing with Working Sets.(Spark:工作组上的集群计算)
[*]2010 - Google - Storage Architecture and Challenges.(存储架构与挑战)
[*]2010 - Google - Pregel: A System for Large-Scale Graph Processing.(Pregel: 一种大型图形处理系统)
[*]2010 - Google - Large-scale Incremental Processing Using Distributed Transactions and Notifications base of Percolator and Caffeine.(使用基于Percolator 和 Caffeine平台分布式事务和通知的大规模增量处理)
[*]2010 - Google - Dremel: Interactive Analysis of Web-Scale Datasets.(Dremel: Web规模数据集的交互分析)
[*]2010 - Yahoo - S4: Distributed Stream Computing Platform.(S4:分布式流计算平台)
[*]2009 - HadoopDB:An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.(混合MapReduce和DBMS技术用于分析工作负载的的架构)
[*]2008 - AMPLab - Chukwa: A large-scale monitoring system.(Chukwa: 大型监控系统)
[*]2007 - Amazon - Dynamo: Amazon’s Highly Available Key-value Store.(Dynamo: 亚马逊的高可用的关键价值存储)
[*]2006 - Google - The Chubby lock service for loosely-coupled distributed systems.(面向松散耦合的分布式系统的锁服务)
[*]2006 - Google - Bigtable: A Distributed Storage System for Structured Data.(Bigtable: 结构化数据的分布式存储系统)
[*]2004 - Google - MapReduce: Simplied Data Processing on Large Clusters.(MapReduce: 大型集群上简化数据处理)
[*]2003 - Google - The Google File System.(谷歌文件系统)
视频数据可视化
[*]数据可视化之美
[*]Noah Iliinsky的数据可视化设计
[*]Hans Rosling's 200 Countries, 200 Years, 4 Minutes
[*]冰桶挑战的数据可视化
【编译自:https://github.com/onurakpolat/awesome-bigdata,译者:刘崇鑫 校对:王殿进,来源于云栖社区】
确实好全!!!东西有点多!!!
页:
[1]